Application Of Transformer Diagnostic Application To Improve Students' Analytical Skills In Transformer Courses Of Electrical Engineering D4 Program

  • Udin Sidik Sidin Universitas Negeri Makassar,  Indonesia
  • Kholik Prasojo Universitas Negeri Makassar,  Indonesia
  • Muhammad Irfan Universitas Negeri Makassar,  Indonesia
  • Suhartono National Chin-Yi University of Technology,  Taiwan, Province of China
Keywords: Analytical Skills, Diagnostic Application, Quasi-Experimental

Abstract

Objective: This study aimed to address the prevalent difficulty among electrical engineering students in applying theoretical knowledge to the practical interpretation of transformer diagnostic data. The primary objective was to assess the effectiveness of a purpose-built diagnostic software application in improving the analytical skills required for this task. Method: The research employed a quasi-experimental, one-group pretest-posttest design involving a sample of 36 undergraduate students in a D4 Electrical Engineering program. Participants' analytical skills were measured before and after the intervention, which consisted of training with the diagnostic application. Data were collected through quantitative tests, student perception surveys, and instructor observation sheets. The analysis involved paired sample t-tests and N-Gain calculations, with findings triangulated using qualitative feedback to enhance validity. Result: The intervention yielded highly positive outcomes, demonstrating a statistically significant improvement in students' analytical abilities. The mean score rose from 56.19 to 82.58, and an average N-Gain score of 0.61 classified the application's effectiveness in the "medium improvement" category. These quantitative findings were strongly supported by qualitative data, wherein students reported the application to be highly intuitive and effective in transforming passive learning into an active, contextualized, and confidence-boosting experience. Novelty: The novelty of this research lies in providing empirical evidence for a scalable and effective pedagogical tool that bridges the critical gap between academic theory and industry-required practical skills. This study presents a validated software-based solution to a persistent challenge in vocational engineering education, demonstrating a tangible method for better preparing graduates to meet professional demands in transformer diagnostics.

Abstract View: 51 PDF Download: 21 SIMILARITY CHECK Download: 6
Download data is not yet available.

Metrics

Metrics Loading ...

References

Aciu, Ancuța-Mihaela, Sorin Enache, and Maria-Cristina Nițu. 2024. “A Reviewed Turn at of Methods for Determining the Type of Fault in Power Transformers Based on Dissolved Gas Analysis.” Energies 17(10): 2331. doi:10.3390/en17102331.
Amin, Ruhul, Md. Shamim Reza, Md. Maniruzzaman, Md. Al Mehedi Hasan, Hyoun-Sup Lee, Si-Woong Jang, and Jungpil Shin. 2023. “Intensive Statistical Exploration to Identify Osteoporosis Predisposing Factors and Optimizing Recognition Performance With Integrated GP Kernels.” IEEE Access 11: 131338–50. doi:10.1109/ACCESS.2023.3336422.
Baldwin, Jessie R., Biyao Wang, Lucy Karwatowska, Tabea Schoeler, Anna Tsaligopoulou, Marcus R. Munafò, and Jean-Baptiste Pingault. 2023. “Childhood Maltreatment and Mental Health Problems: A Systematic Review and Meta-Analysis of Quasi-Experimental Studies.” American Journal of Psychiatry 180(2): 117–26. doi:10.1176/appi.ajp.20220174.
Bazhenova, Elmira, Arzigul Shuzhebayeva, Sarbinas Kuntuganova, Meruert Bazhenova, and Svetlana Murygina. 2022. “The Impact of Mobile Learning on Undergraduate Students’ Cognitive Learning Outcomes: A Meta-Analytic Review.” International Journal of Engineering Pedagogy (iJEP) 12(5): 42–53. doi:10.3991/ijep.v12i5.32821.
Beheshti Asl, Meysam, Issouf Fofana, and Fethi Meghnefi. 2024. “Review of Various Sensor Technologies in Monitoring the Condition of Power Transformers.” Energies 17(14): 3533. doi:10.3390/en17143533.
Boltsi, Angeliki, Konstantinos Kalovrektis, Apostolos Xenakis, Periklis Chatzimisios, and Costas Chaikalis. 2024. “Digital Tools, Technologies, and Learning Methodologies for Education 4.0 Frameworks: A STEM Oriented Survey.” IEEE Access 12: 12883–901. doi:10.1109/ACCESS.2024.3355282.
Cheung, Yang, Zhenguo Jing, Qiang Liu, Ang Li, Yueying Liu, Yihang Guo, Sen Zhang, Dapeng Zhou, and Wei Peng. 2023. “Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser.” Photonic Sensors 14(1). doi:10.1007/s13320-023-0690-0.
Du, Hao, Linglong Cai, Zhiqin Ma, Zhangquan Rao, Xiang Shu, Shuo Jiang, Zhongxiang Li, and Xianqiang Li. 2024. “A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines.” Electronics 13(9): 1716. doi:10.3390/electronics13091716.
Einloft, Jonas, Hendrik L Meyer, Simon Bedenbender, Muriel L Morgenschweis, Andre Ganser, Philipp Russ, Martin C Hirsch, and Ivica Grgic. 2024. “Immersive Medical Training: A Comprehensive Longitudinal Study of Extended Reality in Emergency Scenarios for Large Student Groups.” BMC Medical Education 24(1): 978. doi:10.1186/s12909-024-05957-3.
Febriyan, Repdhi, Mohammad Fatkhurrokhman, and Irwanto Irwanto. 2025. “TRAINER PEMBANGKIT LISTRIK TENAGA SURYA BERBASIS IOT PADA MATA PELAJARAN INSTALASI PENERANGAN LISTRIK DI SEKOLAH MENENGAH KEJURUAN.” Jurnal Informatika dan Teknik Elektro Terapan 13(2). doi:10.23960/jitet.v13i2.6217.
Gifalli, André, Alfredo Bonini Neto, André Nunes de Souza, Renan Pinal de Mello, Marco Akio Ikeshoji, Enio Garbelini, and Floriano Torres Neto. 2024. “Fault Detection and Normal Operating Condition in Power Transformers via Pattern Recognition Artificial Neural Network.” Applied System Innovation 7(3): 41. doi:10.3390/asi7030041.
Goldberg, Jochem M., Marion P. J. Sommers-Spijkerman, Aleisha M. Clarke, Karlein M. G. Schreurs, and Ernst T. Bohlmeijer. 2022. “Positive Education in Daily Teaching, the Promotion of Wellbeing, and Engagement in a Whole School Approach: A Clustered Quasi-Experimental Trial.” School Effectiveness and School Improvement 33(1): 148–67. doi:10.1080/09243453.2021.1988989.
Guo, Xinyu, Linna Wang, Zhenchao Li, Ziliang Feng, Li Lu, Lihua Jiang, and Li Zhao. 2024. “Factors and Pathways of Non-Suicidal Self-Injury in Children: Insights from Computational Causal Analysis.” Frontiers in Public Health 12. doi:10.3389/fpubh.2024.1305746.
Hafiz, Taghreed A, Juliana Linnette D’Sa, Sahar Zamzam, Maria Liza Visbal Dionaldo, Esraa Aldawood, Nouf Madkhali, and Murad A Mubaraki. 2023. “The Effectiveness of an Educational Intervention on Helicobacter Pylori for University Students: A Quasi-Experimental Study.” Journal of Multidisciplinary Healthcare Volume 16: 1979–88. doi:10.2147/JMDH.S419630.
Hazrat, M. A., N. M. S. Hassan, Ashfaque Ahmed Chowdhury, M. G. Rasul, and Benjamin A. Taylor. 2023. “Developing a Skilled Workforce for Future Industry Demand: The Potential of Digital Twin-Based Teaching and Learning Practices in Engineering Education.” Sustainability 15(23): 16433. doi:10.3390/su152316433.
Jin, Yongshuang, Hang Wu, Jianfeng Zheng, Ji Zhang, and Zhi Liu. 2023. “Power Transformer Fault Diagnosis Based on Improved BP Neural Network.” Electronics 12(16): 3526. doi:10.3390/electronics12163526.
Kuasi-eksperimental, Studi, and Rahmat Muhdar. 2025. “Pengaruh Pembelajaran Berbasis Masalah Dan Penilaian Berorientasi Hots Terhadap Hasil Belajar Bilangan Bulat : Sebuah.” 21: 175–83.
Mwansisya, Tumbwene, Columba Mbekenga, Kahabi Isangula, Loveluck Mwasha, Stewart Mbelwa, Mary Lyimo, Lucy Kisaka, et al. 2022. “The Impact of Training on Self-Reported Performance in Reproductive, Maternal, and Newborn Health Service Delivery among Healthcare Workers in Tanzania: A Baseline- and Endline-Survey.” Reproductive Health 19(1): 143. doi:10.1186/s12978-022-01452-4.
Ngwenyama, M. K., and M. N. Gitau. 2024. “Discernment of Transformer Oil Stray Gassing Anomalies Using Machine Learning Classification Techniques.” Scientific Reports 14(1): 376. doi:10.1038/s41598-023-50833-7.
Ohlsson, Henrik, and Kenneth S. Kendler. 2020. “Applying Causal Inference Methods in Psychiatric Epidemiology.” JAMA Psychiatry 77(6): 637. doi:10.1001/jamapsychiatry.2019.3758.
Pourdana, Natasha. 2022. “Impacts of Computer-Assisted Diagnostic Assessment on Sustainability of L2 Learners’ Collaborative Writing Improvement and Their Engagement Modes.” Asian-Pacific Journal of Second and Foreign Language Education 7(1): 11. doi:10.1186/s40862-022-00139-4.
Purba, Sukarman, Yobelita Lastarda, Anggur Aris, Alfredo Kaban, Program Studi, Pendidikan Teknik, and Universitas Negeri Medan. 2025. “THE EFFECT OF USING ELECTRICAL CONTROL TECHNIQUES SIMULATOR SOFTWARE MEDIA ON STUDENTS’ LEARNING OUTCOMES IN THE SUBJECT OF ELECTRIC MOTOR INSTALLATION FOR GRADE XI STUDENTS OF ELECTRICAL POWER INSTALLATION ENGINEERING (TITL) AT STATE VOCATIONAL HIGH SCHO.” 11(1): 53–60. doi:10.37304/parentas.v11i1.13920.
Ramanujan, Purnima, Suman Bhattacharjea, and Benjamin Alcott. 2022. “A Multi-Stage Approach to Qualitative Sampling within a Mixed Methods Evaluation: Some Reflections on Purpose and Process.” Canadian Journal of Program Evaluation 36(3): 355–64. doi:10.3138/cjpe.71237.
Ramzan, Muhammad Babar, Hafsa Jamshaid, Ismial Usman, and Rajesh Mishra. 2022. “Development and Evaluation of Overall Equipment Effectiveness of Knitting Machines Using Statistical Tools.” Sage Open 12(2). doi:10.1177/21582440221091249.
Sadeghi, Alireza, Shahin Alipour Bonab, Wenjuan Song, and Mohammad Yazdani-Asrami. 2024. “Short Circuit Analysis of a Fault-Tolerant Current-Limiting High Temperature Superconducting Transformer in a Power System in Presence of Distributed Generations.” Superconductivity 9: 100085. doi:10.1016/j.supcon.2024.100085.
Shao, Yijun, Yan Cheng, Stuart J. Nelson, Peter Kokkinos, Edward Y. Zamrini, Ali Ahmed, and Qing Zeng-Treitler. 2023. “Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data.” Journal of Personalized Medicine 13(7): 1070. doi:10.3390/jpm13071070.
Wang, Linbo, Yuexia Zhang, Thomas S Richardson, and James M Robins. 2021. “Estimation of Local Treatment Effects under the Binary Instrumental Variable Model.” Biometrika 108(4): 881–94. doi:10.1093/biomet/asab003.
Wardani, Wuri, Baskoro Adi Prayitno, and Lina Mahardiani. 2025. “Effectiveness of E-Module Based on Problem Research Based Learning (PRBL) on Students’ Science Process Skills.” Jurnal Penelitian Pendidikan IPA 11(1): 615–22. doi:10.29303/jppipa.v11i1.10007.
Wong, Vivian C., and Peter M. Steiner. 2018. “Designs of Empirical Evaluations of Nonexperimental Methods in Field Settings.” Evaluation Review 42(2): 176–213. doi:10.1177/0193841X18778918.
Yang, Hongli, and Ying Chen. 2023. “The Impact of Parental Involvement on Student Writing Ability: A Meta-Analysis.” Education Sciences 13(7): 718. doi:10.3390/educsci13070718.
Yuan, Zonghui, Qian Wang, Zhigang Ren, Fangcheng Lv, Qin Xie, Jianghai Geng, Jianhao Zhu, and Fuyun Teng. 2023. “Investigating Aging Characteristics of Oil-Immersed Power Transformers’ Insulation in Electrical–Thermal–Mechanical Combined Conditions.” Polymers 15(21): 4239. doi:10.3390/polym15214239.
Published
2025-07-27
How to Cite
Sidik Sidin, U., Prasojo, K., Irfan, M., & Suhartono, S. (2025). Application Of Transformer Diagnostic Application To Improve Students’ Analytical Skills In Transformer Courses Of Electrical Engineering D4 Program. IJORER : International Journal of Recent Educational Research, 6(4), 987-1000. https://doi.org/10.46245/ijorer.v6i4.975
Section
Articles
Abstract viewed = 51 times
PDF downloaded = 21 times SIMILARITY CHECK downloaded = 6 times